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1 Theoretical Analysis

1.1 Feasibility with Deterministic Queue Bounds

As mentioned before, mobile devices with a finite battery capacity can implement CCO algorithm to
obtain a near optimal solution of P1. This subsection first gives the upper bound of battery capacity
of mobile devices, then verifies the feasibility of CCO algorithm by proofing that the constraint (6)
can always be satisfied.

Lemma 1 (Finite Battery Energy Level Implementation) ∀i ∈ N , if ψi(0) ≤ θi +Emaxi,h , then CCO
algorithm yields ψi(t) ≤ θi + Emaxi,h for every i ∈ N , t ∈ T .

Proof 1.1 ∀t ∈ T , for the ith mobile device, (i) suppose θi < ψi(t) ≤ θi +Emaxi,h , according to (10),
we have ψi(t + 1) ≤ ψi(t) ≤ θi + Emaxi,h because α?i (t) = 0. Otherwise, (ii) if θi ≥ ψi(t), we have
ψi(t+ 1) ≤ ψi(t) + α?i (t) ≤ θi + α?i (t) ≤ θi + Emaxi,h . q.e.d.

The following proposition demonstrates that (6) can always be satisfied under CCO algorithm.

Proposition 1 (Feasibility with Finite Queue Bounds) By solving P2 with CCO algorithm, the
constraint (6) is not violated, which means the solution for P1 obtained by CCO algorithm is feasible.

Proof 1.2 For the ith mobile device, (i) suppose ψi(t) ≥ Emaxi,all , then we have maxIi(t)

{
εli +∑

j∈M εtxi,j(t) · Ii,j(t)
}
≤ Emaxi,all ≤ ψi(t). Otherwise, (ii) if ψi(t) < Emaxi,all , the optimal edge site-

selection problem has the optimal decision I?i (t) = 0, i.e., Di(t) = 1, which can be obtained by the
lower bound of θi. q.e.d.

The above proof uses the fact that if the battery energy level is not sufficient for sending the offloading
request (which means the local execution part cannot be finished successfully), i.e., ψi(t) < εli, the
total energy consumption is zero.

1.2 Asymptotic Optimality of CCO algorithm

In order to analyze the optimality of CCO algorithm, inspired by [1] and [2], we first define problem
P3 as

P3 : min
∀i,Ii(t),αi(t)

lim
T→∞

1

T

T−1∑
t=0

E
[∑
i∈N
C(Ii(t))

]
s.t. (2), (9), (11)

limT→∞
1

T

T−1∑
t=0

E
[
ζi(t)− αi(t)

]
= 0,

where ζi(t) , εli +
∑
j∈Mi(t)

εtxi,j(t) · Ii,j(t) is the energy consumption of the ith mobile device.
Actually, P3 is a relaxed version of P1, i.e., G?P3

≤ G?P1
, where G?P3

and G?P1
are the optimal

objective functions of P3 and P1, respectively.
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Lemma 2 (Existence of optimal (A(t),Eh(t))-only policy) For an arbitrary δ > 0, there exists
a stationary and randomized policy π∗ for P3, which satisfies

E
[ N∑
i=1

C∗(Ii(t))
]
≤ G?P3

+ δ,∣∣E[ζ∗i (t)− α∗i (t)]
∣∣ ≤ $ · δ,

where $ is a scaling constant.

Proof 1.3 The proof can be obtained by Theorem 4.5 in [2]. Similar proof can be found in [1].

Now we dicuss the Performance of CCO algorithm.

Theorem 1 (Performance of CCO algorithm) Under the CCO algorithm implemented with any
parameter V > 0, we have:
(i)

1

T

T−1∑
t=0

ECCO
[ N∑
i=1

C(Ii(t))|Θ(t)
]
≤ G?P1

+
C

V
, (1)

where ECCO[·] is the expectation obtained by CCO algorithm. It means that the optimization goal
deviates by at most O( 1

V ) from the optimum.
(ii) if ∀i ∈ N , Emaxi,all ≤ ψi(0) ≤ θi + Emaxi,h , then

Emaxi,all ≤ ψi(t) ≤ ψmaxi , θi + Emaxi,h , t ∈ T , i ∈ N ,

which means the maximum queue buffer size (battery energy level) ψmaxi is O(V ).

Proof 1.4 (i) By utilizing Lemma 1 and Lemma 2, it is easy to obtain that

∆(Θ(t)) + V ·
N∑
i=1

C(Ii(t)) ≤ V ·G?P3
+ C,

where the left is solved by CCO algorithm. Therefore, by taking the time average expectation of
(1.4), we have GCCOP2

≤ G?P3
+ C

V , where GCCOP2
is the optimal solution obtaiend by CCO algorithm

By utilizing that G?P3
≤ G?P1

, (1) can be obtained. (ii) The proof can be obtained with the assistance
of Lemma 1. Similar proof can be consulted in Theorem 4.5 of [3].

Apperantly, ∀i ∈ N , θi increrases along with the growth of V , which means a larger batery capacity
is needed, and a longer time horizon is necessary for the convergence of CCO algorithm and system
stability. However, higher asymptotic optimality can be achieved.
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