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Variational Inequality

In this slide, we introduce the variational inequality viewpoint
of ADMM.

Recall that ADMM is for solving the following problem:

min  f(x) +g(y), st Ax+By=2b. (1)

xy
It introduces the Lagrangian function:

L(x,y,A) = f(x) + g(y) + (Ax +By — b, A). (2
And, (x*, y*, X*) is a saddle point if it satisfies

L(x™, ¥y, A) < L(x", ¥, A") < L(x, 3, A7), Vx, 3, A, (3)



Variational Inequality

For the left inequality of (3), we have
(A—=A",Ax" —By" — b) <0.
For the right inequality of (3), we have

f(x) +gy) — f(x*) — g(y")

+(x — x*, ATAY) + (y — y*, BTA") > 0,Vx, y, A

Combing them together, we have

f(x) +gy) — f(x*) — g(y")

x—x* AT
+ < y-y |, B >
A=A —(Ax* +By* — b)
+(y— ¥y BIA) >0,¥x, y, A,

()



Variational Inequality

Denote
x . AT
w=|y]|,ulw)= ( ), and F(w) = B’ :
A Y —(Ax+By—b)
We further define

0(u) = f(x) +8(y), (7)
where u is a simplification of u(w). The (6) reduces to
O(u) — 0(u*) + (w— w", F(w")) > 0,Vw. (8)

(8) is called the variational inequality of problem (1).



Variational Inequality

We can easily check that
(w— w,F(w) — F(w)) = 0,Vw, w. )

Thus, (8) is equivalent to
O(u) — O(u*) + (w— w", F(w)) > 0,Vw. (10)

Note that we want to approximate the optimal solution w*.
We say that w is an approximate solution of the variational
inequality problem (10) with accuracy e if it satisfies

O(u) — 0(u) + (w— w,F(w)) <€, Vw. (11)

Especially, e = 0 gives (10).
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Unified Framework in Variational Inequality

With (9), (10) of ADMM: Part 2 and the convexity of f and g,

we have
flx) = £ + (ATA x — xF1) > 0, (12)
g(y) — gy ™) + (BTAF 4 BBT(ByF! — ByF),
y— 9yt >o, (13)
where
JNCk—H xk+1
ﬁ’kJrl — 5}k+1 — ykJrl

plan AF+ B(AxMT! + By* — b)



Unified Framework in Variational Inequality

Add (12) to (13) we have

f(x) + g(y) — F(=*) — g(3)

x — XK1 ATj\kH
+< y o i)k—l-l 7 BTXk_;'_l >
A — )\k+1 —(A.;Ck+1 + lek—l—l . b)

Z <Xk+1 . A,Aik-i_l +B5/k+1 . b)
+B(By* — By, By**"' — By)
AT _Ax\' /0 0 0

lek-i-l _ By 0 BI 0
5)k+1 -

A&.k-ﬁ-l . Axk

B5/k+1 _ Byk
0 I %I 5’k+1 . )\k

= (W — w)"TPTHMP (W™ — wh). (14)



Unified Framework in Variational Inequality

In the above slide,

0 0 O I 0 o A 00
H=[(0 /I 0| M=|(0 I 0],andP=|0 B 0
00 %I 0 A1 1 0 0 I

From (11) of ADMM: Part 2 we have
Pwkt! = Pwk — M(Pw* — Pw*"!). Now, we can summarize

ADMM to the unified variational inequality framework:
1. Predict w*™ satisfying
e(u) . 9(~k+1) + <W wk—H F( k+1)>
> (W — w) T PTHM(PW ! — &) Yw.  (15)

2. Correct £*1(:= Pwr*!) by

€k+1 :sk_M(E P~k+1) (16)



Cast LADMM to the Framework
Similarly, Linearized ADMM (including LADMM-PS, etc.) can
be casted into the above framework, too. We have:

f(x) +gly) — FE) = g(3")
x — AT k1
_|_< y— 5)k+1 : BT \k+1
A _ Xk+1 —(A.i'kJrl + Bj')k+1 o b)
> (W — w) THM(w ! — W), (17)
where w is the same as (14),
BIAIPT-BATA 0 0 I 0 0
H= 0 AIBIT 0], M=|0 I o0
0 0 [131 0 BB 1

We further have
(18)



Cast ADMM-PC to the Framework

For the multi-block problems defined in (1) of The ADMM
Slide: Part 3, denote

X AIT)\
. xl .
w= x:m ,u(}),F(w) A,,é)\ ,
A o —(CL, Axi— b)
O(u) = filx), (19)
and
A= Ak 4 6<§mj & —b). (20)

i=1

Recall that &; = A;x;.



Cast ADMM-PC to the Framework
For the prediction precedure of ADMM-PC ((28), (29) of The

ADMM Slide: Part 3), we have

D_filx) = D_AET

x, — Xkt AT\FH
+< Xm - o AT)‘N\"Jrl >
A — Ak -, AxT —b)
> (W — w) 'PTHM(Pw! ! — €5), (21)
where
_ (BLL" o0 ~( LT o0
H = ( o 1) M={p1..p 1 (22)



Cast ADMM-PC to the Framework

In (21) we also denote (cont’d)

Al 0 0
0 Am 0
0 1

and
w= (&17"'7'%27XT)T
€ = (EIT: "'7£rTn7AT)T'

Further we have

£k+1 _ £k . M<€k . P{:Vk+1).

(23)

(24)
(25)

(26)



Unified Convergence Analysis

In the above slides, we cast all the ADMMs into the
framework of variational inequality. Thus, the convergent
results of the ADMMs can also be expressed in the variational

inequality way.

The reuslt can be found at Theorem 3.17 of the ADMM book.
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